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Structural equation models are a subset of covariance structure models.  They include, as special cases, multiple regression, exploratory factor analysis, confirmatory factor analysis, and path analysis (Steiger, 2001).  In their most general form, covariance structure models relate a population covariance matrix ( to a population covariance matrix based on a specified model’s structural parameters ((().   

( = ((()  (Bollen, 1989, Eq. 1.1, p. 1)


The matrix ((() is calculated on the basis of a vector ( of "structural parameters" contained in the structural model (Bollen, 1989, p. 105).  The equation holds strictly if the model is correct and if its population parameters are known.  Because population parameters are typically unknown, we use sample variances and covariances to create consistent estimators of these parameters. 

((hat) = S 


Estimates for the structural parameters ((hat) are obtained using iterative techniques of nonlinear regression that minimize a fitting function F.  Parameter estimates enter into the calculation of an “implied” population covariance matrix (((hat), the covariance structure that is consistent with the specific model that the researcher has hypothesized.  The fitting function compares the population covariance matrix, for which the sample covariance matrix is an estimate, and the implied covariance matrix.

F = ((hat) - (((hat)

The structural model


The heart of a structural equation model is, precisely, a "structural model" that specifies the hypothesized relationships among a set of variables.  In SEM's least restricted application, these variables can be hypothetical and non-measurable latent constructs.  In fact, Bollen (1989, p. 11) advocates calling the structural model the "latent variable model." 

Models can accommodate latent constructs that are independent or exogenous in that their causes are "unknown or not of interest" (Maruyama & McGarvey, 1980, p. 503) or "lie outside the model" (Bollen, 1989, p. 12).  Models also handle endogenous constructs, which are hypothetically linked to exogenous antecedent constructs.


A matrix representation of a set of structural equations is:

( = ( (  + ( (  + (
( is a mx1 vector of endogenous latent variables, and ( is a nx1 vector of exogenous latent variables.   ( is a mxn matrix of coefficients that relates the n exogenous LVs to the m endogenous LVs.  ( is a mxm matrix of coefficients that relate the m endogenous LVs to one another.  ( is a mx1 vector of "disturbance terms," also called "errors in equations" (Bollen, 1989) to distinguish them from the measurement models' "errors in measurement."  The disturbances represent the structural equations' failure to perfectly predict the endogenous LVs.  

A specific example comes from Bartlett and Palisano (2000), who advocate using structural equation modeling to explore the factors that underlie changes in motor skills in young children with cerebral palsy.  Their conceptual path diagram (modified from Bartlett and Palisano, 2000, Figure 4, p. 604):
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Each of the concepts labeled within ellipses is, in principle, latent and not directly measurable.  The model contains three endogenous latent variables (m=3), each of which is influenced by at least one of the model’s two exogenous latent (n=2) variables (“child characteristics relating to primary impairments” and “child personality characteristics”).

Redrawn below, the figure employs explicit reference to the model’s exogenous and endogenous latent variables, and to the coefficients that specify the hypothesized links among the latent variables.
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The path diagram illustrates a system of three structural equations, one for each endogenous (defined within the model) latent variable:

(1 = (11 (1  +  (12 (2  + (1

(2 = (22 (2  + (2

(3 = (31(1  + (32 (2  + (31 (1 + (3

The matrices that make up the structural model 

( = ( (  + ( (  + (
take the following values:

( = [(1  (2  (3]` 

( = [(1  (2 ]` 
(= [(1 (2  (3 ]`

( =    0    0     0

  ( =    (11  (12 

         0    0     0                                    0    (22 

         (31  (32  0                                    (31   0


Because E(()=0 and E(( )=0, then E(()=0.  We further assume (Joreskog, 1979, p. 307; Bollen, 1989, p. 14; Sharma, 1996, p. 133; Kaplan, 2000, p.42) that the matrix sum (I-B) is non-singular and that the exogenous latent variables ( are independent from (uncorrelated with) the errors in the structural equations (.  Errors in equations are collected in the mxm covariance matrix (=(('. When the errors in equations are uncorrelated, ( is a diagonal matrix.

The measurement model

Endogenous (dependent) and exogenous (independent) constructs are realized, respectively, in a number of measurable variables, Y and X.  A popular computer program that estimates and tests structural equation models, LISREL (Joreskog & Sorbom, 1984) provides notation that has become widespread in the field (Breckler, ____; MacCallum, 1986; Bollen, 1989) and that describes the relationships among latent and measurable variables. For example, the model’s m endogenous latent variables ((1, (2… (m) are linked to p measured indicators (y1, y2,…yp) through a set of coefficients (y.  

Y  = (Y ( + (
where Y is a px1 vector of observed (measured) variables, (y is a pxm matrix of coefficients, ( is the usual mx1 vector of endogenous latent constructs, and ( is a px1 vector of errors in the measurement of Y.  

Similarly, the n exogenous latent variables ((1, (2… (n) are linked to q measured "indicators" (x1, …, xq) through a set of coefficients (x . 

X = (x ( + (
Where X is a qx1 vector of observed (measured) variables, (x is a qxn matrix of coefficients, ( is a nx1 vector of exogenous latent constructs, and ( is a qx1 vector of "errors in measurement" of X. 


A path diagram that combines the structural model from the previous example with a plausible measurement model:

Errors in measurement of the observed variables have expected values of zero (E(() = E(() = 0).  The path diagram illustrates how measurement errors (( and () are uncorrelated with the latent variables ((and () and with one another (Joreskog, 1979, p. 307; Bollen, 1989, p.20).  However, structural models can accommodate situations where measurement errors ( are correlated with each other, and measurement errors ( are correlated.  Variances and covariances of measurement errors are collected in the pxp matrix (( = E(((`) and the qxq matrix (( = E(((’).    

Measurement models are recognizable as factor analytic models that relate observed or measured variables to common latent factors.  The coefficients in the (x and (y matrices constitute factor loadings, and estimates for the latent variables themselves are analogous to factor scores.


Eight matrices collectively constitute the model's estimable parameters: 

(x   (Y     ( = (('     ((=(('   ((=(('    (   (   (=(('

All of these eight matrices have been described except for ( = ((’, which  contains variances and covariances of the latent exogenous variables.   Because variances for the endogenous latent variables are not structural parameters, no special symbol exists to designate them.  Instead, their covariance matrix ((' is defined in terms of the structural model’s reduced form:

( = ( (  + ( (  + (
( - ( ( = ( (  + (
(I – B) ( = ( (  + (
( = (I – B)-1 (( (  + ()

Because E(()=0, it follows that 

Var(() = E(( (`) = (I – B)-1 (( (  + () (( (  + ()` (I – B)-1` 

= (I - ()-1 (( ((`(` + (((`  +  ((`(`  ((`) (I - () –1`

Definitions and assumptions, previously listed, yield the simplified result:

((` = (I - ()-1 (( ((`+ () (I - () –1`
Theoretical and substantive knowledge guides investigators to specify elements in the model that are worthy of estimation.  These “free" elements are estimated on the basis of observed variables’ sample variances and covariances.  Other elements are fixed at certain values and not estimated.  Fixed elements typically occur in the (, (, (x, and (Y matrices.  For example, coefficients that describe the affect of one latent variable on another, contained in the ( and ( matrices, can be fixed at zero where links are not supported a priori by theory.  Similarly, elements in the vectors of factor loadings ((x and (Y) can be fixed at zero where factors are assumed not to be associated with a particular measurable indicator.


 The measurement models for X and Y are recognizable as factor analysis models.  Although factor analysis frequently finds it convenient to constrain underlying factors to be orthogonal to one another, that is, to explain independently the variation among a number of measurable constructs, structural equation models can be more flexible.  The exogenous latent constructs ( need not be orthogonal but can be correlated such that E(((')=(, where ( is a nxn matrix of variances and covariances among the exogenous latent factors.  Because latent factors have no intrinsic metric, analysts must tie their scale of measurement to the model’s observed variables.   They accomplish by fixing the variance of one exogenous variable (for example, setting var((1)=1 ), or by equating each ( with one of its indicators (Sharma, 1996, p. 42; Kaplan, 2000, p. _____).  

Implied population covariance matrix

Combining the structural and measurements permits calculation, on the basis of the model’s parameters (collected in the vector (), of a predicted or fitted population covariance matrix ((():


((()
= 
(xx
(xy

(yx
(yy
where

(xx= Var(X) = E(xx') = E[((x ( + ()((x ( + ()’]



= (x ( ( ‘(x  + (x E((()  + (x E((()  + E(((’))  



= (x( (x’ + ((


because E((() =0 and E(((’)=0.

(xy= Cov(xy)= E(xy') = E((x ( + ()((Y ( + ()’



= (x ( (’(Y’  + (x E(( (’)  + (Y’ E(((’) + E(((’)

Because 
E(( (’) =0

E(((’) =0

E(((`)=0,

When ( is expressed in its reduced form: 
(xy  
= (x ( [(I - () -1 (( (  + ()]’  (Y’

= (x ( (’ (’ (I - ()-1’ (Y’  +  (x ( (’ (I - ()-1’ (Y’

= (x ((’ (I - ()-1’ (Y’
because E(((`)=0 

(yx is the transpose of  (xy , that is,  (Y (I - ()-1 (( (x ‘ (where ( is a symmetric matrix)
(yy 
=  Var (Y) = E(yy’) = E [((Y ( + ()((Y ( + ()’]


=  (Y E(( (’)(Y’  +  (Y E (((’)  +  (Y E(((’)  +  E (((’)

=  (Y E(( (’) (Y’  +   (Y E (((’)  +  (Y E(((’)  +  E (((’)

=  (Y E(( (’) (Y’ + ((
because  E(((’) = E(((’) =0

Expressing  ( in the structural model’s reduced form yields:

(yy 
= (Y [(I - ()-1 (( (  + () (( (  + ()’ (I - ()-1’ ]  (Y’ +  ((
=(Y(I-()-1[(E(((’)(’+(E(((’)+(E(((’)+E(((’)](I-()-1’(Y’+((
=(Y(I -()-1[(((’ + (](I - ()-1’(Y’ +  ((
because 
E(((’) =E(((’) =0

Therefore, 

((() = 
(x( (x’ + ((
 (x ((’ (I - ()-1’ (Y’
   
 (Y(I-()-1(((x ‘
(Y(I -()-1[((( + (](I - ()-1’(Y’+ ((
so that the population covariance matrix is expressible in terms of elements of the parameter vector (.

Modeling covariance structures

Structural equation models can specify and estimate a variety of covariance structures.  These can apply to, for example, the within-subject errors in measurement contained in ((, or to the errors in equations collected in the ( matrix.  Among the covariance patterns most commonly hypothesized are compound symmetry, first-order autoregressive, and general autoregressive (Jennrich & Schluchter, 1986, pp. 807-809; Rovine & Molenaar, 2001, pp.72-73).

Compound symmetry, a covariance structure that Rovine and Molenaar (2001, p. 73) suggest is appropriate when repeated treatments are randomly ordered, is defined (Jennrich & Schluchter, 1986, Table 1, p.808):

(( = (2I + 1 (2b 1`  = (2 + (2b            (2b                        (2b                (2b

 

     (2b             (2 + (2b                  (2b                (2b

    

    (2b                  (2b                 (2 + (2b           (2b   

    

    (2b                  (2b                        (2b           (2 + (2b   

Compound symmetry is a special case of the more general “random effects” or “random coefficients” (Jennrich & Schluchter, 1986, p. 807-808) structure, 

(( = Z (2b Z`   + (2I
such that Z is, in the case of compound symmetry, a vector of ones.

A first-order autoregressive pattern specifies that correlations decrease with time such that (ij = (2(|i-j| and

(( = 1    (    (2  (3


       (    1    (   (2 


       (2   (   1    (     (2


       (3   (2  (   1

In the least restrictive pattern, all t/(t+1)/2 variances and covariances are “unstructured” are potentially estimable.

Covariance structure modeling is flexible enough to handle structures that are intermediate to these “archetypal” presentations.  For instance, a researcher could, on the basis of theory or prior research, place modest constraints on an unstructured covariance pattern.  He or she could test the appropriateness, in contrast with a nested and even more unstructured alternative, of some hybrid pattern that incorporated features of the unstructured and the autoregressive varieties.

(( =  (1      (2      (3      (4 

        (2      (1      (2      (3

        (3     (2       (1      (2 

        (4      (3      (2      (1 
Model estimation and model fit


Elements of the vector ( of model parameters are typically estimated using iterative techniques that minimize a non-linear fitting function.  A common fitting function that assumes that the measured variables (and the latent constructs) and distributed as multivariate normal random variables is:

_______________


When the model seeks to specify the mean structure in addition to the covariance structure, this fitting function becomes:

____________________ (Joreskog, 1979, p. 311)

When the mean structure is unconstrained and not estimated, the sample’s covariance structure provides the information for assessing model fit.  Where p and q represent, respectively, the number of observed indicators for exogenous and endogenous latent variables, then [(p+q)(p+q+1)] / 2  is the number of non-repeated elements in the sample covariance matrix.  If s represents the number of free or unconstrained elements in the various matrices that contribute structural parameters to (, then the fitting function’s minimum value is a chi-square goodness of fit statistic with degrees of freedom equal to (p+q)(p+q+1)/2  - s.   

Mean and covariance structure analysis

When all variables are measured on similar scales with similar origins, information for model estimation and specification or fitting can be derived from the structure of means, as well as from the covariance structure.   This commonality of measurement scale and location, and therefore this additional information, is often available in longitudinal studies (Browne & Arminger, 1995, pp. 187-188).

When the covariance and the mean structures are both of interest, the analysis can employ not only the [(p+q)(p+q+1)] / 2 non-redundant pieces of information in the sample covariance matrix, but also the (p+q) informative sample means.  In this case, the fitting function’s degrees of freedom is 

[(p+q)(p+q+1)/2  + p+q] – s

= [ (p+q) (p+q+1) + 2(p+q)] /2 –s

= (p+q)[ (p+q+1)+2] /2  - s

= [(p+q)(p+q+3)/2]  - s

When means are included, the measurement models become, for example (modified from Kaplan, 2000. Equation 4.24, p. 68),

yg   = (y + (yg (g + (g
where individual observations yg within group g are composed of an underlying mean score (y, a latent factor score (g that individuals within the group hold in common, a corresponding factor loading (yg, and a measurement error (g that is peculiar to and attributable to group membership.  In matrix form, the measurement model for y becomes:

y = ( y + (y  ( + (
The corresponding structural model, which includes a vector of structural intercepts (, is:

( = ( + ( ( + (( + (
or, in its reduced form:

( = (I – B)-1 (( + ( (  + ()

The observed indicators y have expected values and variances:

E(y) 
= E(( y + (y  ( + ( )

= E [( y + (y  [(I - ()-1(( + ( (  + ()] + ( ]

= ( y + (y (I - ()-1 (( + ( ()  

Var(y)  
= E[y-E(y)]2
= E [(( y + (y  [(I-()-1((( + ( (  + ())] + ( ) - (( y + (y(I-( )-1( ( + ( ())] 2
=  E [(y  (I - ()-1 ( + ( ] 2
=  E [(y  (I - ()-1 ( + (] [(y  (I - ()-1 ( + (] ` 
=  E ((y  (I - ()-1 ( + ()((`(I - ()-1`(y ` + (`) 

=  (y (I-()-1 ( (I-()-1` (y` + ((
Adapting structural models to longitudinal data


MacCallum and Austin (2000, pp. 205-208) distinguish between sequential and repeated measures approaches to the analysis of longitudinal data.  The preceding example from Bartlett and Palisano (2000) employs a sequential approach; the researchers collect information on variables at different times from a sample of subjects.  The variables that are of interest at relatively early points in time -- information on primary impairments is an example in the Bartlett and Palisano's study -- need not be the same as those measured later, like information on secondary impairments or motor outcomes.


Alternatively, repeated measures designs collect information on the same set of variables.  MacCallum and Austin (2000) suggest that two classes of models, autoregressive and latent curve models, subsume the typical applications of SEM to data with repeated measures.  


The classic formulation of Zeger and Liang (1992; also Diggle, Liang, & Zeger, 1994, pp. 131-136) proposes three approaches to longitudinal data analysis.  Marginal models are appropriate when interest centers on a population.  Random effects and transitional models, in contrast, describe differences at the level of the cluster or individual.

We deal first with latent curve and related approaches. 

SEM's relationship with repeated measures analysis of variance

A repeated measures design can be expressed as a linear model such that:

Yit  =  (i  +  ( it  +  ( it
where each yit is an observation on subject i and at time t.  In matrix terms, for subject i:

Y  =  X(  +  (
where X is an augmented design matrix that treats time as a categorical variable that is measured without error.  For example, the design matrix :

X = 1 0 0 0

      1 1 0 0

      1 0 1 0

      1 0 0 1

combined with a  vector of estimable time effects ( such that (`= [ (  (2  (3  (4 ], establishes the first of the four measures as a “baseline” or point of comparison.  

After certain transpositions, namely X = (y  and ( = (, the model becomes
Y =  (y  ( + ( 

which is recognizable as a SEM measurement model.  A path diagram illustrates the design’s conceptual structure.  The parameters collected in ( become estimable latent factor scores.  The design matrix X’s nonzero elements become a set of factor loadings coefficients (.  In this example, these all equal one and define "path weights" between the latent variables (ovals) and measured variables (rectangles).
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An SEM-like structural model is established by including a vector of structural intercepts (:
( = (  + ( ( + (
As the path diagram illustrates, the four coefficients in ( do not influence one another, that is, (=0.  

Treating the repeated measures analysis of variance as a special case of SEM makes clear two other assumptions.  First, the coefficients in ( are assumed to be fixed, to be constant for each subject, and to have variances and covariances of zero.  Because ( = 0, then ((`= ( =0 and ( = [ (  (2  (3  (4 ]` = (.  In other words, the vector of estimated parameters passes from ( to (, and the structural model reduces to the measurement model.

Yi = (y  ( + (
Second, the covariance structure of the measurement errors ( can be specified in SEM.   Each subject’s measurements are likely to be correlated, and SEM permits the researcher to hypothesize different covariance patterns, and compare their appropriateness, given the observed sample’s variances and covariances. 

The repeated measures analysis of variance models time categorically.  This is meaningful when certain important events, like hospitalization, divorce, retirement from the work force, or medical treatments intervene between measurements on a dependent variable (Osgood, 2001, p. 100).  When it is more meaningful to model time continuously, a latent growth modeling approach is relevant.  

SEM’s relationship with latent growth curve models

Latent growth curve models represent an intersection between SEM and hierarchical models.  An SEM measurement model quantifies level-one change among, for example, individual subjects.  Further, a structural model estimates “level-two” population parameters, latent constructs that relate to “inter-individual differences in intra-individual development” (Nesselroade & Baltes, ****; Willett & Sayer, 1994, p. 364).  SEM’s two-part approach to latent growth models relate directly to multilevel or hierarchical models, which are described later.  


Specifically, “within-person” change in individual i over time t, might be described as a linear function

Yit = (0i + (1i Xt + ( it
where (0i (an intercept) represents an individual’s initial status and (1i (a slope) represents an individual’s rate of change.  Additional parameters could describe growth functions that are quadratic, or that involve higher order terms.  Within-person change is expressed in a SEM measurement model:

Y =  ( y + (y  ( + ( 

Willet and Sayer (1994) show how to define and structure the model’s matrices so that the individual intercept and slope coefficients (0i and (1i and other important parameters are estimable using common software like LISREL.  They define the vector of measurement means ( y as a null vector, and (y as a design matrix all of whose elements are known and based on the data’s time structure.  Specifically, (y’s first column consists of ones while its subsequent columns represent the temporal spacing of measurements. 



1   t1

1   0



1   t2

1   1

(y
=
1   t3
=
1   2



1   t4

1   3

Fixing all the elements in ( y and (y leaves the free and estimable parameters (0i and (1i to reside (as factor scores) in the matrix ( of latent factors (Willett & Sayer, 1994, p.367).   The model’s other free elements remain in (( , the covariance matrix of measurement errors
The path model illustrates how the time-structured repeated measures yi are multiple indicators (each with its own estimable measurement error) of the latent growth parameters (Muthen, 2002, p. 88).  
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The path diagram also illuminates the “level-two” or between-person model, which defines the ith individual’s growth parameters (in ():

(0i =  (0i  =  (0  +  ( 0i
(1i = (1i   =  (1  +  ( 1i
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in terms of fixed parameters ( and structural errors (, whose distribution is:

Willett and Sayer’s (1994) structural model

( = ( + ( ( + (
 includes a vector of structural intercepts (, which contains estimates of the growth parameters’ population means (the initial status or intercept (0 and the rate of change or slope (1).  By defining ( as a null matrix, Willett and Sayer (1994) cause the estimates for the means of population growth parameters (formerly restricted to the latent growth vector () to pass to the ( vector.  Specifically, beginning with the measurement model:

E(Y) = E(( y + (y  ( + ( )

and substituting for ( in its reduced form:

E(Y) = E(( y + (y (I – B)-1 (( + ( )  + ( )

Because ( y  and ( are both defined as null vectors, and because E(()=E(()=0, 

E(Y) = E((y ()

Further, because

Var(Y) = (Y(I -()-1[((( + (](I - ()-1`(Y`+ ((
and because this form of the latent growth model contains no exogenous latent variables:

Var(Y)  = (y  (  (y`

Therefore, when the model specifies and fixes the elements of (y, estimates of the growth parameters’ population variances and covariances are contained in ( = ((’.  As in the other SEM approaches, ( can have one of a number of hypothesized structures.  

Alternatively, the model can estimate certain free elements in (y.  For example, specifying that 


1   t1
1   0


1   t2
1   1

(y       =
1   t3   =
1   (3


1   t4
1   (4

permits the model to estimate the time structure that would be associated with purely linear change.  This parameterization is an alternative to using a quadratic term in a measurement model that is linear in its parameters.

The SEM approach is extremely flexible, so that various error structures (such as compound symmetry, first-order autoregressive, and general autoregressive) can be hypothesized and estimated for (( .  The model’s fit with the observed covariance structure can be assessed, and nested models can be compared as to their appropriateness.  

A popular approach alternative is to model homogeneity of within-subject variation, that is, 

(( = (2 I
The rationale for this approach is the underlying assumption that between-subject differences are explainable in terms of variability of the slopes and intercepts of individual growth curves.  By assigning a relatively simple structure to the within-subject measurement errors, between-subject variability is estimated as errors in the structural equations, are contained in the ( matrix.

Sayer and Cumsille (2001) extend the univariate approach illustrated in the path diagram by constructing a second order latent growth model.  This approach involves multiple outcomes, contained in a vector yt, at each occasion of measurement.  These observed outcome are indicators of underlying, first-order latent factors.  The time-structured latent factors are expressions, in turn, of the elements of a latent growth vector.  The latent growth vector contains intercepts, slopes, and other coefficients that describe individual growth, and which are, in this model, second-order latent factors.

Hierarchical models and SEM

A disadvantage of SEM for the purpose of assessing change is its requirement that data be "time structured;" observations must occur in the same "waves" for each participant.  Although the waves need not be equally or systematically spaced, the existence of "missing values," or individually distinct patterns of timing of observations, is problematic.  Alternative approaches that forgive a lack of "time-structuring" include multilevel of hierarchical linear models.
Hierarchical or multilevel models are frequently associated with Bryk and Raudenbush (1987), who authored software that is widely used in education research.  In education and psychometrics, hierarchical models typically address observations on research subjects whom researchers have identified within a multilevel sampling scheme.  For example, researchers might study students, who are sampled from a set of classrooms.  The classrooms, in turn, are sampled from different schools or school districts.  At any level of the analysis, units of analysis are described by covariates that presumably influence the outcomes or behaviors of the students who are the study’s “level-one” objects.


Longitudinal studies fit into the hierarchical framework if the level-one model involves repeated observations over time on individuals.  The model’s second level describes between-individual or interindividual effects.  The analysis can incorporate covariates at any level.


At the primary level of longitudinal data analysis, the multilevel model (Bryk & Raudenbush, 1987; Raudenbush, 2001, pp. 38-40; Hox, 2002, pp. 11-15) examine the univariate outcome yit where individual i is observed at time t.  The model’s two levels are familiar from the discussion of latent growth curves:

Yit  =  ( 0i  +  ( 1i X it  +  ( it
(ki = (k0 + uki        , k=0, 1, … (K-1)

Where change is modeled as linear (K=2), the ( parameters are:

(0i = (0 + u 0i
(1i = (1 + u 1i
Variability in the ( coefficients among i individuals is attributed to an unobserved (latent) and fixed mean (k, combined with random and individual-specific regression errors ui distributed as:
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Combining the level one and level two models:

 Yit  =  ( 0i  +  ( 1i X it  +  ( it
Yit  =  ((0 + u0i)  +  ((1 + u1i) X it  +  ( it
Yit  =  (0 + (1X it + u0i  + u1iX it + ( it

expresses the outcome Yit  in terms of the second-level parameters (
Yit  =  (0 + (1X it + (it

where (it = u0i  + u1iXit + ( It. 

 
Raudenbush (1995, p.176) points out that each individual's measurement errors (it are necessarily correlated in this model, as demonstrated by the presence of the common terms u0i and u1i.  Measurement errors (it are also unequal across occasions of measurement; note the presence of the Xit term.  These difficulties preclude ordinarily least squares estimation, if not of the model's parameters, then of their standard errors.

Muthen (2002, p. 87) connects SEM to multilevel modeling by observing that SEM treats the observed data y as a multivariate vector, then estimates parameters in a “single-level analysis.”  Multilevel modeling, in comparison, involves a “two-level analysis of a univariate outcome y.”  

Because the hierarchical linear model's “level one” coefficients vary randomly according to their own error structure at level two, Raudenbush (2001, p. 39) argues that it is also properly considered a “random coefficients” model.    He argues, additionally, that the random coefficients model is also a structural equation model, because the Yij are expressed at the first level as observed indicators of an underlying vector of coefficients (, while the elements of ( are modeled at the second level as latent factors.  

Mixed models

Because it contains both fixed (() and random (u) parameters, the hierarchical model qualifies a mixed model (Raudenbush, 2001, p. 40).  Returning to the expression that combines both of a hierarchical model's two levels:

Yit  =  (0 + (1X it + u0i  + u1iXit + ( It.

assuming that Yi is measured at four repeated occasions, then letting

( = [(0 (1]`
 ( = [ u0i  u1I ]`,  

X = 1 xi1

1 xi2

1 xi3

1 xi4

Z =  1 zi1

1 zi2

1 zi3

1 zi4

yields the general linear mixed model (Laird & Ware, 1982): 
yi  =  xi ( + z i ( i + ( i
yi is a vector of ni observations for the ith subject.  The observations are combinations of fixed [xi (] and random  [z i ( i + ( i ] effects.   Linear regression and repeated measures analysis of variance are special cases of the model when Z=0.   Software that analyzes mixed models, including SAS PROC MIXED,  can also estimate hierarchical models (Singer, 1998).


 In a mixed model that regards change among repeated measures on a sample of subjects as a linear process, the vector ( of (level-one) fixed effects contains estimates of mean parameters for initial status (intercept) and rate of change (slope). 


The model's estimates of the vector ( of (level-two) random effects involve individual growth parameters, the initial levels and rates of change (intercepts and slopes, respectively) that describe each individual's trajectory of change.  


The model attributes observed variability to separate between- and within-subject errors. It explicitly segregates “within-subject” measurement error (i  from between-subject variability in the growth parameters (Jennrich & Schluchter, 1986, Table 1, p. 808; Rovine & Molenaar, 2001, equation 3.18, p.76).  

Var(yI)  =  var (xi ( + z i ( i + ( I)

     =  Z((`Z`+ var ((i)

         = (2 (ZDZ’+ Wi)  
Each individual's growth parameters (the intercept and slope coefficients contained in (i) are themselves random variables, with distributions typically assumed as (i ~ N(0, (2D).  Specifically, (2D  is a “between-subject” covariance matrix of random effects.  Within-subject errors are distributed as (i ~ N(0, (2 Wi).


Unless D or Wi is constrained, the general linear mixed model has no unique solution.  One approach, the “conditional independence model” (Laird & Ware, 1982, p. 965) stipulates that Wi = I.  The approach assumes that correlation among the n I repeated measurements on subject I are accounted for by the (i that describe each individual’s process of change.  Residual variation around each individual’s growth curve (the measurement errors (i ) is assumed to be homogenous and independent of the occasion of measurement, so that ( ~ N(0, (2 I).  

SEM and mixed models

Rovine and Molenaar (2001) show how to express the general linear mixed model as a structural equation model, and how to estimate its coefficients as model parameters.  Reflecting the general linear mixed model’s form

            yi =   [xi z I ]   (      +  ( i
( i
they construct a measurement model where:

Yi = (y  ( + ( i
that horizontally concatenates the design matrices X and Z into the matrix of structural coefficients (y .  The ( and ( vectors are vertically concatenated as free and estimable elements in the vector ( of latent factors.  


The design can be concatenated only if the design matrices Xi and Zi, , and the within-subject covariance matrices Wi  for each individual are of the same dimension.  Specifically, Xi = X, Zi = Z, and  Wi = W.  Longitudinal data must be balanced; each individual must be observed the same number of times, and on the same occasions, and data must be present for each subject for all occasions.  This constitutes a limitation for the use of SEM in estimating mixed models.

Structural equation models cannot accommodate temporal structures in which subjects are observed at different times.  
To use SEM to estimate the general linear mixed model, (( is constrained to be a diagonal matrix with a constant estimable variance, ((=(2I, so that the measurement model becomes

Y = (y  ( + ((
A second modification necessary to estimate the general linear mixed model in SEM is to include in the structural model a vector ( of structural intercepts.  

( = (  + ( ( + (
Then, constraining ( to equal 0 ensures that the estimable parameters ( and (, which represent respectively mean fixed and random effects, are contained in the ( matrix of latent variables.   The matrix is structured such that ( = [ ( 0 ]; the model obtains estimates for the fixed effect means while constraining the random effects to have means of zero.  Information on the estimable parameters ( of random effects is not lost, but is retained in the block diagonal structure of the covariance matrix ( of latent variables.

Var(()   = Var(( + ()  =Var(((`) = (
                             =  Cov (((`   Cov ((`()  
0      0

    =
                                 Cov ((`()   Cov ((`()    
0    (2D
The fixed effects ( have variances and covariances of zero, while random effects, contained in the main diagonal’s lower portion, are freely estimated.  The block diagonal matrix’ off-diagonal elements illustrate the assumption that covariances among fixed and random effects are zero.


The constraint on the covariance structure of within-subject errors ((( = (2I), previously placed on the measurement model, produces the result: 

Var(yi) = (2 (ZDZ’+ W)

         = (2 (ZDZ’+ I)


          =  Z(Z’ + ((  

Thus, the structural equation model causes the freely estimated elements in (‘s lower diagonal portion to equal (2D, the variance and covariances of the random effects (i.

Estimates for each individual's values of (I can be recovered by letting V = ZDZ`+ I, so that Var(yi) = (2(ZDZ’+ I) = (2 V.  Then, following Laird & Ware (1982, equation 3.2, p. 966) and Rovine and Molenaar (2001, Equation 3.33, p.82), 

(i = D Zi' V-1  (yi - Xi B)

Finally, predicted values for the yi are calculating by combining estimated coefficients for fixed and random effects, ( and (I  respectively, in the usual way (Rovine & Molenaar, 2001, Equation 3.34, p.83): 

yi  =  Xi(+ Zi(i
___________________
 

Bengt Muthen (2001) discusses latent class analysis, which deals with subjects' membership in latent or unobserved groups.  Its ability to define and assign membership subpopulations, as well as is capacity to introduce categorical variables to the discussion, makes it an attractive path to follow.   Given my clinical experience and interests, it is realistic to investigate approaches to integrating SEM with continuous longitudinal data -- perhaps growth curve approaches -- with the latent class analysis.  Any realistic dataset from a clinic will include important categorical variables.  


I've read just enough, and had just enough frustration trying to program new SEM approaches to continuous data like autoregressive models and state-trait models, to understand why they may not be the way to go.  If and when they are identified, they converge erratically, and produce estimates that are incredibly sensitive to initial estimates. Kenny and Zautra (2001, p. 248, for example) discuss estimation problems with certain types of autoregressive models.  


I'm much more inclined to model change as a trajectory.  There are interesting ways to do this by linking SEM with general linear mixed models (Rovine & Molenaar, 2001) and piecewise linear models (Sayer & Cumsille, 2001), which permit one to model discontinuities in time, as when some event intervenes during a clinical course.

Is it true that Rogosa thinks SEM is irrelevant to longitudinal data?????

Bollen discusses the bugbear of multivariate normality on SEMnet, SEMNET Digest - 13 Jun 2002 to 14 Jun 2002 (#2002-160)
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